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ABSTRACT

Seismic waves reflected from steep reflectors in the earth’s subsurface spend a
significant amount of time travelling more or less horizontally. Therefore, accurate
imaging of steep geologic structure requires knowledge of the behavior of these hor-
izontally propagating waves. In particular, the effect of tunneling on seismic waves
propagating in thinly-layered media must be understood.

I describe a method for modeling seismic waves traveling in thinly-layered me-
dia. This method, a frequency-wavenumber finite-difference scheme coupled with the
Born approximation, is useful in studying seismic waves reflected from steep geologic
structures.

For thinly-layered media, reflected seismic waves show frequency-dependent am-
plitude and phase behavior that varies with the reflection dip. This dip-dependent
attenuation and dispersion is not well understood and is ignored in conventional seis-
mic processing.

Waves propagating vertically in a sequence of thin layers are known generally to
lose high frequencies by stratigraphic filtering. However, waves reflected from steep
reflectors in a thinly-layered medium are additionally attenuated and dispersed by
the less well-known evanescent filtering. Seismic waves become evanescent when they
arrive at a high-velocity layer at post-critical angle. When the high-velocity layer is
thin relative to a seismic wavelength, a significant amount of low-frequency energy
tunnels through to an adjacent lower-velocity layer. Repeated tunneling, as a result of
alternating high- and low-velocity layers, yields attenuation and dispersion of seismic
waves reflected from steep reflectors. An improved understanding of this filtering
action may help us to improve seismic processing techniques used to image steep
geologic structures.
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INTRODUCTION

Overview

Studies of acoustic well logs show that a major portion of the stratigraphic column
of the Gulf of Mexico is made up of a binary sequence of alternating layers of sand
and shale (e.g., Velzeboer, 1981). It is also common to find massive salt structures
in that area. Only recently, seismologists have begun to directly image steep geologic
structures in the Gulf, such as overhanging salt domes intruding into a sequence of
thin sedimentary layers. While reflection seismic data can give a good indication
of the presence of salt, accurate imaging of the flanks of salt bodies requires both a
good understanding of seismic waves in thinly-layered media and adequate processing
techniques (Larner et al., 1989).

Seismic waves reflected from nearly vertical interfaces, such as the flanks of salt
domes, spend a significant amount of time traveling more or less horizontally. These
horizontally traveling waves behave differently from the well-understood vertically
traveling waves, especially in thinly-layered media. This behavior difference is typ-
ically ignored in seismic data processing. A good understanding of the behavior of
horizontal traveling waves may help us to improve our processing of seismic reflections
from steep interfaces.

The purpose of this research is to study the behavior of seismic waves propagating
in thinly-layered media, in particular, waves that are reflected from steep interfaces.
A qualitative understanding of this behavior is obtained by analyzing the frequency-
dependent attenuation of seismic waves reflected from dipping interfaces.

Modeling techniques based on a high-frequency, WKBJ approximation cannot
properly represent seismic waves traveling in thinly-layered media. The study of
seismic waves traveling in such media requires a different modeling approach. In this
thesis, a modeling algorithm is described that generates synthetic zero-offset surface
seismograms in earth models consisting of thin sedimentary layers and steep geologic
structures.

Observations of synthetic seismograms show that seismic waves traveling in thinly-
layered media are attenuated and dispersed differently for different interface dips.
This dip-dependent wavelet shaping is related to the difference of propagation angles
of seismic waves propagating in a sequence of sedimentary layers. Stratigraphic filter-
ing (e.g., O’Doherty and Anstey, 1971; Banik et al., 1985a; Banik et al., 1985b; White
et al., 1990) caused by destructive interference of short-period multiples, is well known
to attenuate high frequencies of the seismic signal. Waves traveling in a sequence of
thin sedimentary layers may also lose their high frequencies through evanescent filter-
ing, because only the low-frequency energy tunnels through thin, high-velocity layers
(e.g., Fuchs et al., 1976). Attenuation of seismic waves reflected from steep interfaces
in thinly-layered media may likely be attributed to both stratigraphic and evanescent
filtering.
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F1G. 1. Seismic waves reflected from a steep interface spend a significant amount
of time traveling more or less horizontally in an increasing-trend, velocity-layered
medium.

Background

In a stack of sedimentary layers, elastic wave speeds alternate with depth because
of lithologic variations, but the velocities usually also tend to increase with depth. In
this thesis, I refer to such a medium as increasing-trend, velocity-layered medium. If
the spatial wavelength (i.e., dominant thickness of layers) of the medium is comparable
to or smaller than the wavelength of the seismic signal, the layers of the medium are
considered to be thin.

Figure 1 shows such a geologic model. Because the velocity of the medium has an
increasing trend with depth, seismic rays taking off from the Earth’s surface exhibit
increasing propagation angles (i.e., angles as measured with respect to the vertical)
with increasing depth. At some depth, some of the rays travel horizontally along
sedimentary layers before being reflected from an overhanging interface. Therefore,
seismic waves reflected from steep interfaces spend a significant amount of time trav-
eling nearly horizontally.

When seismic waves arrive at a high-velocity layer with their incident angle larger
than the critical angle, the propagating waves become evanescent. Since amplitudes
of these evanescent waves decay exponentially away from the layer boundary, they
are typically ignored in seismic data processing. However, if the thickness of the high-
velocity layer is small relative to the wavelength of the seismic signal, the evanescent
waves behave differently from the evanescent phenomenon with which we are famil-
iar. The amplitude decay with distance of long-wavelength evanescent waves is slower
than that of short-wavelength waves. When evanescent waves arrive at the boundary
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F1G. 2. Seismic waves become evanescent when they reach the boundary of a high-
velocity layer beyond post-critical angle. In the high-velocity layer, the amplitudes
of high-frequency components decay faster than those of low-frequency components.
Some of the low frequencies tunnel through the high-velocity layer while high fre-
quencies do not.

of a low-velocity layer before their amplitudes exponentially decay to negligible val-
ues within the high-velocity layer, the transmitted waves become propagating again.
These long wavelength waves are known as tunnel waves; they have tunnelled through
the thin, high-velocity layer.

Repeated tunneling attenuates the high-frequency content of seismic waves that
travel through a sequence of alternating layers with large propagation angles. Figure 2
schematically illustrates the frequency-dependence of this evanescent filtering.

Investigations

Conventional ray theory is based on a high-frequency assumption. That is, the
dominant wavelength of seismic waves is assumed to be short relative to the dominant
spatial length scale, such as the thickness of layers or the distance between the source
and the receiver (e.g., Bleistein et al., 1984). The validity of this assumption can be
measured by a dimensionless factor, a/), where a is the dominant spatial length and
A is the dominant wavelength of the signal. The high-frequency assumption is valid
only if

a/A>1.




Deng Seismic Wave Propagation

However, the media we are interested in are those for which the thicknesses of layers
are comparable to, or even smaller than, the typical wavelength of the seismic signal.
For such media, the high-frequency assumption in ray theory may fail to accurately
predict even the first-arrival times. A “full-wave” method must be used to accurately
describe waves propagating in thinly-layered media.

To reduce the complexity of dealing with both dipping geologic structures and
thinly-layered sedimentary media, the modeling used in this research is performed in
two steps:

1. Calculate the Green function for a sequence of thin sedimentary layers, ignoring
the existence of geologic structure. A frequency-wavenumber finite-difference
(FKFD) scheme is used to compute this Green function.

2. Using the Green function, compute reflections from dipping interfaces via the
Born approzimation.

The well-known reflectivity method (e.g., Aki et al., 1980) is commonly used to
model seismic waves propagating in layered media. However, this method is valid
only for homogeneous layers. For a medium where velocity continuously changes,
perhaps linearly with depth, the many thin homogeneous layers required to represent
this medium make the reflectivity method prohibitively expensive, because each inter-
face between the layers must be dealt with individually. A finite-difference method
is preferred under this circumstance because its computational cost is practically
independent of the complexity of velocity and density functions of depth. I have
implemented Korn’s (1988) frequency-wavenumber, finite-difference method, which
takes advantage of the lateral homogeneity of the medium and computes the Green
function due to a line or point source at any depth.

Given the computed Green function, reflections from a steep interface are com-
puted via a first-order Born approximation. The first-order approximation is valid as
long as reflection coefficients of interfaces are small enough (i.e., r < 5%) (Bleistein
et al., 1985).

The error caused by numerical approximation in this modeling technique is in-
significant in the study of the amplitude and phase behavior relevant to this research.
Since the computational cost of generating synthetic seismograms is independent of
both the complexity of the velocity and density function and the complexity of the
shape of the interface, this algorithm is a relatively efficient method to model seismic
waves propagating in thinly-layered media with complex geologic structure.

With this modeling algorithm, we can generate synthetic seismograms and study
the behavior of seismic waves traveling in thinly-layered media, specifically, seismic
waves reflected from steep interfaces.

Seismic waves that travel vertically through a sequence of thin layers are known
to lose their higher frequencies. O’Doherty and Anstey (1971) first observed and
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analyzed the frequency-dependent attenuation due to short-period multiples which
is known as stratigraphic filtering. The filtering action is similar to the attenuation
within inelastic media, though these two phenomena result from totally different
mechanisms. Further investigations of stratigraphic filtering (e.g., Banik et al., 1985;
White et al., 1990) have led to a quantitative understanding of the attenuation of
waves traveling in a thinly-layered medium.

However, this study of the frequency-dependent attenuation was based on the
assumption of a 1-D model, i.e., seismic waves traveling vertically through layered
media . When seismic waves propagate into a sequence of thin layers at other angles,
their amplitudes and phases can be affected by evanescent filtering as well.

Figure 3 shows frequency spectra of modeled seismic reflections from vertical and
horizontal interfaces embedded in an increasing-trend, velocity-layered medium. The
thickness of the layers is 150 m, comparable to the wavelength of the acoustic signal.
Waves reflected from the vertical interface are more bandlimited than those reflected
from the horizontal interface. The main difference between the two spectra is the loss
of high-frequency energy in the reflection from the vertical interface.




Deng Seismic Wave Propagation

1.0 g 1.0

084t e . 0.8 -1 ORISR SRR SR S
[0 | 3 N . . Q s . . .
5 g . : .

= 064 P S O EZ 064} s e Ceeens
E 3 L
< | R < S

B 04_ ....... ...... ....... . ...... E 0.4 ~ ....... ....... , ......
8 1] 1 8 L IS I

0.2 fo i A e P 0.2 f- i) Lo e SR

0 M St P8 AN S e VAL S S

0 10 20 30 40 0 10 20 30 40
Frequency (Hz) Frequency (Hz)

horizontal reflector vertical reflector

F1Gc. 3. The upper figure depicts the velocity model and acquisition configuration
used to generate seismograms throughout this thesis. The bottom two graphs show
the scaled frequency spectra of the reflections from a horizontal and vertical interface
embedded in a sequence of thin layers. The velocity of the medium has a linear trend
of 1.6+ 0.5 z (km{ls) and a sinusoidal variation with a spatial wavelength of 150 m.
The source signal has a dominant frequency of 10 Hz.
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MODELING OF SEISMIC WAVES IN THINLY-LAYERED MEDIA

Conventional modeling methods, based on the WKBJ approximation, are invalid
for layered media that have spatial wavelengths comparable to, or thinner than, the
seismic wavelength; the high-frequency assumption on which the WKBJ approxima-
tion depends is not satisfied. Hence, a “full wave” method must be used to model
seismic waves propagating in thinly-layered media.

The modeling used in this research is performed in two steps. First, compute the
Green function in a sequence of sedimentary layers using the frequency-wavenumber
finite-difference (FKFD) modeling algorithm of Korn (1987), ignoring the existence
of the interface. Then, using the Green function, compute waves reflected from an
interface embedded in the sedimentary layers via the Born approzimation (Bleistein
1985). This two-step modeling algorithm separates the complexity of dealing with
steeply dipping geologic structures from that of dealing with sedimentary bedding.

Here, I describe this modeling algorithm and discuss its accuracy.

Green’s Function

A large variety of methods for modeling seismic wavefields in vertically inhomo-
geneous media has been developed. Each method has its particular advantages and
disadvantages. Due to high-frequency assumptions, conventional methods based on
the WKBJ approximation fail to predict even the first arrival times for waves traveling
in thinly layered media. Commonly used reflectivity methods become prohibitively
expensive for media where the velocity is continuously changing, or media that contain
many thin layers. The basic assumption for reflectivity methods is that the medium
is made up of homogeneous layers, and interfaces of each layers must be dealt with
individually. The FKFD algorithm introduced by Korn (1988) has no high-frequency
approximation, and the seismic wavefield is computed for all depths simultaneously.

The FKFD algorithm is a combination of integral transformations and a finite-
difference technique. The wavefield for each frequency and wavenumber, the frequency-
wavenumber response of the medium, is calculated by a one-dimensional finite-difference
scheme. The summation of these frequency-wavenumber responses yields the seismic
wavefield in the medium.

Finite-differencing in depth enables the algorithm to handle complicated velocity
and density variations with depth, the computational cost depending mainly on the
bandwidth of seismic signals rather than on the complexity of velocity and density
functions. Evaluation of the wavefield at an arbitrary depth in the medium requires no
additional computation, as the wavefield is calculated simultaneously for all depths.

A Frequency- Wavenumber, Finite-Difference Algorithm

The acoustic wave equation may be reduced to a second-order ordinary differential
equation when the wavefield is decomposed for each frequency (w) and wavenumber
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FiG. 4. The finite-difference mesh used in the modeling. The wavefield is computed
by finite-differencing for each frequency and wavenumber.
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where p(z) is bulk density, z is depth, v(z) is the medium velocity, S(w) is the Fourier
transformed signature of a source located at depth z,, and P(w,k, z) is the pressure
field. Equation (1) may be solved by a second-order implicit finite-difference scheme.
Figure 4 shows the finite-difference “star” used to calculate P(w,k, z) for a single
frequency and wavenumber. For each frequency and wavenumber, finite-differencing
is performed for all depths with three coefficients: a, b and ¢, which vary with velocity
and density, and a table d, which is associated with the source. This finite-difference

scheme is described in Appendix A.

Using the finite-differencing derived in Appendix A, equation (1) is discretized
into a set of tri-diagonal linear equations,

oo 0 o 0 Vrp 1 [d
a b ¢ 0 : P, dy
0 ay by ¢ : =1: . (2)
Do Prs dn—2
[0 o oo apy by | LPa-1 ] [ e ]

The coefficients a;, bj, ¢;, and the table d of this linear system are given by equa-
tions (A-9), (A-11), and (A-12). This tri-diagonal linear system can be solved using
a linear recursion (e.g., Claerbout, 1985, p.99).

8
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As shown in Appendix B, this second-order finite-difference scheme approximates
the differential equation (1) to an fourth-order accuracy. The accuracy of this finite-
difference algorithm is discussed in the section on Computational Issues (page 11).

Composing the Seismic Wavefield

The seismic wavefield is obtained by integrating the frequency-wavenumber re-
sponse computed by the finite-differencing. For a line-source, or a two-dimensional
(2-D) point source, the integration is a 2-D inverse Fourier transform of the frequency-
wavenumber response,

p(t,r,2) = 417/00 dwe™" /oo dke’*" P(w, k, 2), (3)

where r is the horizontal distance from the source, k = k, is the horizontal wavenum-
ber, and p(t,r, z) is the wavefield corresponding to a 2-D point source. For a three-
dimensional (3-D) point source, a cylindrical coordinate system is used in the com-
putation. The wavefield is circularly symmetric because of the layered-medium and
the point pressure source. In this case, the solution is represented by

p(t,r,z) = #/m dwe ™™ /oo dkkJo(kr)P(w, k, z), (4)

where 7 is the radial distance from the source, k = ,/kg + kg is the radial wavenumber,

and p(t,r,z) is the wavefield corresponding to a 3-D point source; k, and k, are
wavenumbers related to two orthogonal horizontal directions in Cartesian coordinates.

The integral over the horizontal wavenumber in equation (3) is a straightforward
inverse Fourier transform. However, the integral over the radial wavenumber in equa-
tion (4) is a Hankel transform, which has a non-periodic, Bessel function kernel.
The computational costs of commonly used Hankel transform algorithms are of order
O(N?) (Deng, 1991), where N is the number of samples to be transformed. The use
of the fast Hankel transform algorithm can reduce the cost to an order of O(NlogN),
so that the efficiency of computing the seismic wavefield due to a 3-D point source
is greatly enhanced (Deng, 1991). Further discussion of the seismic wavefield due
to a 3-D point source, however, is beyond the scope of this thesis. Here, only those
waves due to 2-D point sources are considered. Therefore, the wavenumber integral
is simply performed by an FFT algorithm.

To satisfy the condition of causality, the integration over the frequencies in equa-
tion 3 is taken above the singularities on the real axis,

w =v+1i€6, where € > 0. (5)

The frequency-wavenumber response P(w,k,z) is thus computed for complex fre-
quencies w. As a result of using complex frequencies, the wavefield is exponentially
attenuated by an amplitude factor e~¢. This attenuation avoids the possible alias
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F1G. 5. Seismic wavefield in an increasing-trend, velocity-layered medium due to

a 2-D point source buried at 0.75 km of depth. The velocity has a linear trend of

1.6 + 0.5z (km/s). The spatial wavelength of the velocity layering is 0.1km. The

source wavelet is a Ricker wavelet with a dominant frequency of 8 Hz. For display

(plurpltl)ses, the wavefield shown in the cube is sliced at 0.3 s in time and 0.3 km in
epth.

of seismic traces, wherein signals of late times appear at early times on a seismo-
gram. P(w,k,z) is obtained by solving the complex-coefficient, tri-diagonal linear
system, equation (2). Therefore, the wavefield corresponding to a 2-D point source is
represented by

p(t,r,z) = 41?/00 dwe™ /oo dk e*" P(w, k, 2)
= 41—26" /oo dve ! /oo dk e* P(w, k, 2). (6)
72 ) —oo

As shown in equation (6), the frequency integral is performed by a Fourier transform
followed by an amplitude correction that compensates for the use of complex w by
an exponential factor e in the time domain. Hence, use of a large imaginary part
of frequency can result in boosted noises at late times. An imaginary part € =
l0g.(100) /T, where T is the maximum recording time, keeps the amplitude factor to
be at most 100 at the latest time. This choice of € is used in this thesis research.

Figure 5 shows a seismic wavefield computed by using the FKFD modeling algo-
rithm for an increasing-trend, velocity-layered medium. This type of medium is used
for the study of dip-dependent attenuation of seismic waves described on page 17.

10
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Green’s Function

The Green function is the wavefield that corresponds to an impulse source function
both in time and space, s(t,z,z) = §(t)6(x — x,)6(z — 2,). If the Green function for
a single frequency is G(w, z, 2;z,, 25), then according to the representation theorem
(e.g., Aki et al., 1980, p.28), the wavefield for a single frequency P(w,&,n) due to a
source function S(w, z, z) can be written as,

Pw,2,2) = [ de [~ dnS(w,&m) Glw,=,56m). (7)

Therefore, computing the Green function can be an important step for obtaining the
seismic wavefield. Solving equation (1) via the finite-differencing with S(w) = 1 yields
a frequency-wavenumber response of the Green function.

Computational Issues

The ability to handle rapid vertical variation in velocity functions is an advan-
tage of finite-difference algorithms over some other approaches for computing seismic
wavefields, such as ray tracing or reflectivity. Since the computational cost of solving
the tri-diagonal linear system, equation (2), is determined by the size of the system,
the cost of the FKFD modeling is directly related to the number of vertical samples,
as opposed to the cost of reflectivity methods, which depends on the number of layers.

However, finite-difference methods have the disadvantage of introducing errors as
a result of approximating differential operators. The accuracy of a finite-difference
algorithm is an important issue in the computation; therefore, grid spacings must be
carefully chosen to ensure both accuracy and efficiency.

To determine the grid spacing in finite-differencing, two issues need to be consid-
ered: the wavelength of the seismic signal, and the thickness of layers. According to
the sampling theorem, signals must be sampled at least twice in each cycle, or

v TV
AZ S 2fmaz‘ wmaz‘,
where f.q, is the maximum frequency of the signal and wpe; = 27 fe.. However,
approximations to differential operators require a smaller grid spacing than that re-
quired by the sampling theorem. Define a dimensionless grid spacing parameter R for

measuring the grid spacing with respect to a seismic signal,

R= Winae A2
B TVUmin ’
where v, is the minimum velocity of the medium. From this definition, R is the
ratio of the grid spacing used in approximating differential operators to the maximum
spacing required by the sampling theorem. In addition, the medium must be sampled
at least once for each layer. Therefore, the grid spacing used in the finite-differencing

is determined by
TUmin

Az= MIN ( R, h,,,.-,,) , (8)

wmaa:

11
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where h,,;, is the minimum thickness of the layers. Hence, the cost of a finite-
difference algorithm depends on both the wavelength of seismic waves and the mini-
mum thickness of layers.

The grid dispersion and anisotropy of the numerical approximation can be rep-
resented by the deviation of the phase velocity of waves in the numerical solution ¢
from the real velocity of the medium v. According to discussions in Appendix B,
the phase velocity of waves numerically propagating on the grid is a function of the
propagation angle and frequency,

(9)

c(f,w) =~

v
- NY A RicosS0
1_(1rvmm) wiRicos®
VWmaz 240

Figure 6 shows the ratio of the phase to true velocity as a function of frequency
and propagation angle at the minimum velocity. Because the phase-velocity error
decreases as frequency decreases or propagation angle increases, horizontal traveling
waves have the least phase-velocity error caused by finite-differencing. The phase-
velocity error at the maximum frequency is determined by the grid spacing param-
eter R. Figure 7 shows the phase-velocity error at the maximum frequency and the
minimum velocity for R = 0.2 and R = 0.4. It can be seen that halving R greatly im-
proves the accuracy of the approximation. All the numerical results in this thesis are
generated by the finite-difference algorithm with R = 0.4 because the finite-difference
approximation is accurate enough for the requirement of this research.

Brown (1984) showed that a centered finite-difference approach for piecewise
smooth coefficients converges to a true solution of the problem in the limit of the
grid spacing going to zero. According to the previous discussions, the convergence
rate of the phase velocity is of fourth-order in grid spacing. However, the order of
convergence of amplitudes is another issue that must be considered. According to
Brown (1984), the accuracy of the phase-velocity is determined by the approximation
to differential operators within layers, and the accuracy of reflection amplitude is de-
termined by the interface approximation — the continuity of the wavefield at interfaces
of layers and the continuity of the gradient of the wavefield at the normal direction
of these interfaces. According to Sochacki, et al. (1991), the centered difference
scheme described in Appendix A implies a second order, O(A22), approximation of
this interface condition.

12
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F1G. 6. The accuracy of the finite-difference scheme used in the modeling. The ratio
of the numerical and material velocity as a function of frequency and propagation
angle. The grid parameter R is 0.4. For a fixed grid parameter R, the dispersion
and anisotropy of the finite-difference decreases with decreasing frequency and with
increasing propagation angle.

Zero-Offset Reflections from Dipping Interfaces in Thinly-Layered Media

Born Approzimation

The reflected wavefield is often referred to as the scattered wavefield, while the
wavefield corresponding to the Green function is the incident wavefield (e.g., Bleis-
tein, 1984). Under the assumption of small reflection coefficients, a first-order Born
approximation (e.g., Bleistein, 1985) gives zero-offset reflections from a dipping in-
terface using the incident wavefield.

For our problem, the velocity of the sedimentary medium is taken as the back-
ground velocity, and the presence of an interface perturbs the velocity function. As a
result of this perturbation, the real velocity of the model, which is made up of a se-
quence of sedimentary layers and an interface, may vary laterally as well as vertically.
If the background velocity function is ¢(2) and the real velocity function of the model
is v(z, z), the perturbation a(z, z) due to the interface is defined by the expression

1 1
v (z,2)  c(2) [+ afz,2)].

(10)

13
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F1G. 7. Phase-velocity accuracy of the finite-difference algorithm at the maximum
frequency. The ratio of the numerical and real velocity as a function of the propagation
angle for two grid parameters, R = 0.2 and R = 0.4. The halving of R greatly
improves the accuracy of the approximation.

The wavefield for a single frequency, P(w, z, ), is the solution of the 2-D Helmholtz
equation
0 (1 0 ) 0? w? w?

75: 557 )+ 3" Py = e S, (Y

where S(w) is the Fourier transformed signature of a source located at (z, z;). This
wavefield is made up of two parts, the incident and scattering fields:

P(w,z,z) = P(w,z,2) + Py(w, z, 2). (12)

The incident field P;(w, z, 2) is a solution of the unperturbed Helmholtz equation,

0 (1 0 ) 0? w? w?

pa ;(T)ZR + '5':1:—213: + ’05(—2)'13:' = —mé(x — 2,)8(2 — z,)S(w). (13)

If G(w,z,2;z,,2,) is the Green function for a single frequency due to a 2-D point
source at (x,, 25), then we have

Pi(w,2,2) = S(w) G(w, 7, 7,25, 2)- (14)

As the horizontal dependence of the wavefield depends only on the distance from the
source, equation (14) can be equivalently written as,

Pi(wv I:L‘ - xali |z - z8|) = S(w) G(w7 I:I: - ﬂfsl, |z - Z,l). (15)

14
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The Green function G(w, |t — z,|,|2 — 2|) can be obtained by the FKFD algorithm
mentioned in the previous section.

The equation for the scattered field given below is obtained by substituting equa-
tions (10) and (12) into the Helmholtz equation (11),

2 (10 o? w?
3, (;EP’> + 83:2P’ + c2(z)P" = c2( ] a(z, z) [P + Py). (16)
In equation (16), P, is O(a), linear order in a (Bleistein, 1985); the second-order term
aP, at the right-hand side of equation (16) can be ignored if a is small enough that
O(c?) is negligible. Therefore, the scattering field P, is a solution of the Helmholtz
equation where the velocity function is the background velocity ¢(z) and the source
function is a scaled incident field aP;. Referring to equation (7), the solution of
equation (16) at (z,z2) is

P, ) =2 [ de [ an SR 6=l - 2)G(o o -l |z =D (17)

If the source and receiver locations are the same, as for a zero-offset seismic experi-
ment, then

Py, 2) = 6S) [ dnges [ deale @l — =D (18)

Equation (18) is obtained from equation (17) by the fact that a(z,z) =0 for z < 0,
changing the order of integration and substituting in equation (15). Equation (18)
represents a zero-offset section reflected from an interface that perturbs the back-
ground velocity ¢(z) with a perturbation a(z, z).

Line Integral in Born Approzimation

The perturbation function o, due to a 2-D geologic structure, is non-zero in the
area covered by the structure. Hence strictly, the computation of zero-offset seismo-
grams using equation (18) requires an areal integration. However, in this research, I
have assumed that the perturbation exists only on the interface,

oz, z) = a(z, 2)0(x — z,)6(z — 2,),

where (., 2,) lies on the interface. Under this assumption, the double integral in
equation (18) is reduced to a line integral along the interface L,

Pu(w,02) = S(@) [ dilen) 5 6(6,1) P le b ln—2l),  (19)

<(n)

where [(€,7) is the arc length of the interface at (£,7). This delta-function pertur-
bation assumption reduces the computation from the area integral to a line integral.
However, the use of a delta function introduces a spatial differentiation to wavelets

15
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because of the reduction from an areal integration to a line integration. Since the
purpose of this research is to study the behavior of seismic waves caused by velocity
layering, and as the same differentiation will occur with or without the layering, this
differentiation of wavelets does not affect the result of this research.

According to Bleistein (1985), the first order Born approximation described above
is valid for perturbations o < 5%. Throughout this thesis, a = 2.5% is used in all
the experiments for analyzing the dip-dependent behavior of the seismic waves in
thinly-layered media.

Theoretically, using equation (19) with a layered background medium can yield
zero-offset reflections from an arbitrarily shaped interface. However, the algorithm
required to numerically represent an arbitrary geometry is not trivial. Fortunately,
for the purpose of studying the dip-dependent behavior of seismic waves, only plane-
dipping interfaces are necessary. The dip-dependent behavior of waves traveling in
velocity layered media is to be studied by observing seismograms generated by this
modeling algorithm.
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FREQUENCY-DEPENDENT ATTENUATION OF SEISMIC WAVES

Attenuation of Seismic Waves in Thinly-Layered Media

Amplitudes of seismic waves are altered in a frequency-dependent way while
they propagate. It is well known that seismic waves lose their high frequencies
because some of the high-frequency energy is absorbed by the medium due to in-
elasticity. Therefore, seismic data lose temporal resolution at late recording times.
This frequency-dependent attenuation is quantitatively described by the “Q” of the
medium. The change in the frequency content of seismic data with increase of record-
ing time is a form of non-stationarity.

Seismic deconvolution is designed to improve the temporal resolution of seis-
mic data. When the non-stationarity of seismic waves cannot be ignored, the de-
convolution process must treat seismic data recorded at late times differently from
those recorded at earlier times. Time-variant spectral whitening (e.g., Yilmaz, 1987,
147) is a straightforward technique of deconvolution for compensating for the non-
stationarity and thus enhancing the temporal resolution of seismic data. Inverse
Q-filtering deconvolution (e.g., Yilmaz, 1987, 151) is a more appropriate technique
than time-variant spectral whitening for dealing with the frequency-dependent at-
tenuation because this deconvolution approach is based on an understanding of the
physical mechanism that causes the phenomenon.

Observations of seismic data indicate that attenuation of seismic waves can be
caused by other mechanisms. Figure 8 shows reflections from a horizontal interface
beneath two different sedimentary media, one with a linear velocity variation without
layering, and the other with an increasing-trend, velocity-layered medium. These
reflections are computed by the modeling method described in the section on Modeling
of Seismic Waves in Thinly-Layered Media (page 7). Figure 8a shows the reflection
for the linear-velocity medium. The layered medium, corresponding to Figure 8b,
has a spatial wavelength smaller than the dominant wavelength of the seismic signal.
The reflection wavelet for the layered medium is broader than that for the medium
without layering. Broadening of the wavelet shows that some of the high-frequency
energy is lost through reflection as waves travel in the thinly-layered medium. This
phenomenon can be seen clearly in Figure 9, which shows the frequency spectra of
these two reflections. Because both of the media have large ), the absorption of
seismic energy due to inelasticity can be ignored. The loss of high-frequency content
in Figure 8b can be attributed only to the thin layering of the medium.

O’Doherty and Anstey (1971) observed that the high-frequency content of seismic
waves appears to be attenuated by short-period multiples. When seismic waves travel
through a sequence of sedimentary layers, a series of multiples is produced at velocity
discontinuities. These multiples cannot be distinguished individually if thicknesses
of the layers are smaller than the seismic wavelength. Seismic wavelets, which are
the superpositions of both primaries and multiples, are thereby broadened in time.
As a result of these interferences, seismic waves lose their high frequencies as they
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F1G. 8. Zero-offset reflections from a horizontal interface beneath (a) a linear-velocity
medium (v(z) = 1.6 + 0.5z (km/s)) and (b) an increasing-trend, velocity-layered
medium where the velocity has a linear trend of 1.6 + 0.5z (km/s) plus a sinusoidal
variation with a spatial wavelength 60 m. The dominant frequency of the source
signal is 10 Hz.

travel through a sequence of thin layers. This phenomenon is known as stratigraphic
filtering. Though this effect on seismic signals is similar to that caused by inelasticity,
the stratigraphic filtering effect is due to destructive interference, not to absorption
of seismic energy.

Following O’Doherty and Anstey (1971), much progress has been made toward
understanding the attenuation behavior of seismic waves due to thin layers. Banik et
al. (1985a) derived formulas to describe quantitatively the apparent attenuation and
time delay caused by stratigraphic filtering in a statistical sense. In addition, they
studied this filtering for sedimentary sequences typically logged in oil and gas wells
(Banik et al., 1985b).

However, their work was based on an assumption that seismic waves propagate
vertically through sedimentary layers (i.e., perpendicular to the reflecting boundaries).
Seismic waves reflected from a steep interface have to spend a significant amount of
time traveling more or less horizontally. These waves, traveling at large incident angles
may be attenuated and dispersed by another, not well-known reason. Successful
imaging of steep geologic subsurfaces likely requires that the behavior of horizontally
traveling waves be understood.
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F1G. 9. Frequency spectra of the seismic traces in Figure 8. The dotted line is the
frequency spectrum of the reflection for the linear-velocity medium without layering,
as in Figure 8a. The solid line is the spectrum of the reflection for the increasing-trend,

velocity-layered medium, as in Figure 8b.

Figure 10 shows reflections from a wvertical interface in two different sedimentary
media, a linear-velocity medium without layering (Figure 10a) and an increasing-
trend, velocity-layered medium (Figure 10b) with a spatial wavelength comparable
to the dominant wavelength of the seismic signal. As was the case for vertical in-
cidence, the reflection wavelet for the layered-medium arrives at the same time as
that for the linear velocity medium, but is broader. In addition, the wavelet for the
layered medium has lower amplitude than that for the linear-velocity medium. The

frequency spectra shown in Figure 11 highlight differences in these two reflections.
High frequencies in the waves that travel nearly horizontally in the layered medium
are largely attenuated — more so than are those in vertically propagating waves.

As observed in Figure 8 and Figure 10, seismic waves reflected from horizontal and
vertical interfaces are attenuated and dispersed differently. It is known that the atten-
uation of waves reflected from horizontal interfaces arises from stratigraphic filtering
associated with short-period multiples. However, because of ray bending, those waves
reflected from vertical interfaces spend more time traveling in each layer and travel

through fewer layers than do those reflected from horizontal interfaces. Therefore,
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Fi1G. 10. Zero-offset reflections from a vertical interface. (a) is the reflection for a
linear-velocity medium. The velocity function is v(2) = 1.6 + 0.5z (km/s). (b) is the
reflection for an increasing-trend layered-velocity medium. The velocity function has
a linear trend of 1.6+40.5z (km/s) plus a sinusoidal variation with a spatial wavelength
150 m. The dominant frequency of the source signal is 10 Hz. The horizontal distance
from the source to the vertical interface is 2.5 km.

the stratigraphic filtering of waves reflected from steep interfaces will be different,
and perhaps less severe. However, from our previous observations in Figure 3, waves
reflected from a vertical interface are more dispersed than are those reflected from a
horizontal interface. This implies that there must be another mechanism that con-
tributes to the attenuation of seismic waves that propagate with large, non-vertical
angles.
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F1G. 11. Frequency spectra of the seismic traces in Figure 10. Dotted line is the

frequency spectrum of the reflection for the linear-velocity medium without layering,
as in Figure 10a. Solid line is the spectrum of the reflection for the increasing-trend,

velocity-layered medium, as in Figure 10b.
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Tunneling across a Thin High-Velocity Layer

According to Snell’s law, the transmission angle for seismic waves transmitted from
a low- to a high-velocity medium is larger than the incident angle. The critical angle
is the incident angle which produces a 90° transmission angle at the interface of a
velocity discontinuity. When seismic waves reach a high-velocity medium with angles
equal to or larger than the critical angle, no waves propagate into the high-velocity
medium. However, some of the seismic energy, which has an exponentially decaying
amplitude with distance from the boundary, penetrates through the discontinuity into
the high-velocity medium. This penetrating energy is known as an evanescent wave
(e.g., Aki et al., 1980, 155). The decay rate of the evanescent wave is a function of
frequency,

in?6; 1
Aocexp | —wz sm2 L =1, (20)
vy U2

where w is the frequency of the wave, 6, is the incident angle of the wave, v; is
the velocity of the low-velocity medium, and vy is the velocity of the high-velocity
medium. The rate of amplitude decay increases linearly with frequency, and the decay
rate also depends on the incident angle and the velocity contrast between the two
media. Figure 12 shows snapshots of seismic waves from a point source propagating
before and after reaching the critical angle. After the waves reach the critical distance,
which is the offset at which the reflection occurs at the critical angle, the amplitudes
of reflections are stronger than those of smaller offset reflections while the transmitted
waves become evanescent.

If the high-velocity layer is thin relative to the wavelength of seismic waves, the
evanescent waves may reach the boundary of another low-velocity layer and become
propagating again. Figure 13 illustrates the point made in equation (20) that high-
frequency evanescent energy decays faster than does low-frequency energy. Therefore,
more low-frequency evanescent energy arrives at the lower boundary of the high-
velocity layer than does high-frequency energy. Propagating waves in the deeper
low-velocity layer are dominated by the low frequencies, since their high-frequency
content cannot be recovered. This low-frequency leakage when seismic waves travel
through a thin, high-velocity layer is known as tunneling. Figure 13 also shows that
the waves arriving at the critical angle are better able to tunnel through the thin,
high-velocity layer than are waves arriving at larger angles.

Figure 14 shows seismic waves propagating in a three-layer medium that has a
high-velocity layer between two low-velocity layers. When the wave reaches the first
interface with a post-critical angle, the energy penetrating into the high-velocity layer
becomes evanescent. If the thickness of the high-velocity layer is large relative to the
seismic wavelength, amplitudes of the reflections are strong after the waves reach
the critical angle and transmitted waves become evanescent, as shown in Figure 14a.
Hardly any evanescent energy survives the 300 m thick high-velocity layer at offsets
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F1G. 12. Snapshots of seismic wave propagation, computed for a 2-D point source
at the origin. The waves propagate through a velocity discontinuity of the medium
at z = 0.6km, where v; = 2km/s, v = 6km/s. The critical distance is 0.42 km.

The dominant frequency of the source signal is 10 Hz. (left): the snapshot before the

waves reach the critical angle. Sright): the snapshot after the waves reach the critical
angle. Notice the stronger amplitude of reflections that beyond critical distance than
those of smaller offset reflections, and the exponentially decaying evanescent energy
just below a depth of 0.6km of waves.

larger than the critical distance. Figure 14b contains a snapshot of propagating waves
at a later time; the increased incident angle at the interface increases the decaying
rate of evanescent waves and even less energy is observed in the deeper low-velocity
layer than at the earlier time. Figure 14c shows the snapshot for a 75 m thick
high-velocity layer; the reflections at offsets larger than the critical distance are not
as strong as those shown in Figure 14a. Some of the evanescent frequencies in the
thin, high-velocity layer reach the lower low-velocity medium before their amplitudes
decay to negligible values. Figure 14d shows that less energy tunnels through the
thin, high-velocity medium at larger offsets, but much more has tunneled through
this thinner layer than through the thicker ones.

Observations of seismic waves propagating in this three-layer medium tell us that
evanescent energy can tunnel through high-velocity layers if the high-velocity layer
is thin enough for the propagating energy to survive. The amount of energy that
survives is determined by the frequency content of the seismic signal, the propagation
angle, the velocity contrast of the low- and high-velocity media, and the thickness of
the high-velocity layer.

The numerical results in Figure 12 and Figure 14 were produced by the frequency-
wavenumber, finite-difference modeling method mentioned in the preceding chapter.
This modeling method handles waves that tunnel through thin, high-velocity media,
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Fic. 13. Amplitudes of evanescent waves decay exponentially with depth. The decay
rate is a function of the frequency and the incident angle. When the high-velocity
layer is thin, some of the evanescent energy survives to propagate into the deeper
medium. The low-frequency energy has more chance to tunnel through than does the
high-frequency energy.

while conventional WKBJ methods cannot predict the low-frequency leakage of the
evanescent waves.

When seismic waves are reflected from a steep interface in a medium with a se-
quence of sedimentary layers, low-frequency waves tunnel repeatedly through thin,
high-velocity layers in the alternating sequence of high- and low-velocity layers. Waves
traveling through the medium are those surviving this repeated tunneling, which
introduces a frequency-dependent evanescent filtering. Therefore, seismic waves re-
flected from steep interfaces in thinly-layered media are attenuated and dispersed
because of both their large propagation angles and the velocity layering.
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(c) layer=75 m time=0.52 s (d) layer=75 m time=0.62 s

F1G. 14. Snapshots of seismic waves propagating through three-layer media with
a vy = 2km/s upper low-velocity layer, a v = 6km/s middle high-velocity layer,
and a v3 = 2km/s lower low-velocity layer. The critical distance is 0.42 km. The
dominant frequency of the source signal is 10 Hz. (a),(b): Snapshots of waves
propagating at time = 0.52s,0.62s in a medium with a high-velocity layer between
z=0.6 and 0.9km . (c),(d): Snapshots of waves propagating at time = 0.52s,0.62s
in a medium with a high-velocity layer between z = 0.6 and 0.675 km.
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Dip-Dependent Behavior of Seismic Waves in Thinly-Layered Media

Reflections from Vertical Interfaces

Due to evanescent filtering, seismic waves reflected from a vertical interface em-
bedded in an increasing-trend, layered-velocity medium are attenuated and dispersed.
The amount of energy loss due to evanescent filtering is determined by the spatial
wavelength of the medium and the velocity contrast of low- and high-velocity layers.
Keeping the velocity contrast of the sedimentary layers as a constant, changes in the
spatial wavelength of the sedimentary layers greatly affects the evanescent filtering of
seismic waves.

Figure 15 shows reflections from a vertical interface in an increasing-trend, velocity-
layered medium where variation of the medium is slower than that of the waves. The
increasing trend of velocity with depth causes ray bending of seismic waves. When
these waves reach a high-velocity layer at post-critical angles, they become evanescent
with exponentially decaying amplitudes. Waves reflected from a vertical interface in
a thickly-layered medium, as shown in Figure 15a, have lost most of their energy due
to alternation of the layers and large, non-vertical propagation angles of the waves.
For comparison, Figure 15b shows the same reflections for linear-velocity medium
without layering. The smoothness of the velocity function yields a high-resolution
seismogram where no intra-bed multiples or evanescent waves are generated. How-
ever, when seismic waves are reflected from a vertical interface in an increasing-trend,
velocity-layered medium, most of the energy is lost in the thick high-velocity layers.

Figure 16 shows the frequency-dependent behavior of waves reflected from a ver-
tical interface in layered media with different layer thicknesses. The waves increase
their propagation angles as they travel down to the interface due to the increasing-
trend of velocity with depth; they normally reach the vertical interface and reflect
back to the source position along the same paths. When the sedimentary layers are
thick relative to the wavelength of seismic waves, repeated evanescent decay greatly
attenuates the high-frequency energy. The low resolution and weak amplitudes of the
waves in Figure 16a shows that only very low frequencies survive the evanescent filter-
ing in the medium where velocity varies slowly with respect to the seismic wavelength.
When the spatial wavelength of the sedimentary medium decreases, more and more
energy tunnels through the thin, high-velocity layers. Figure 16 illustrates that reso-
lution of the seismograms increases with a decrease in layer thickness. Figure 16d has
the sharpest reflections of all four seismograms. When the spatial wavelength of the
layered medium is shorter than the minimum wavelength of the seismic signal, most
of the seismic energy survives the repeated thin high- and low-velocity alternating
layers.

Figure 17 shows frequency spectra of the reflections in Figure 16. The spectra
verify the observations from Figure 16 that frequency-dependent attenuation is more
severe for larger ratio of changes of the medium to that of the wavefield. When
layer thicknesses are comparable to the seismic wavelength, only low frequencies can
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Fi1Gg. 15. Zero-offset synthetic reflections from a vertical interface. The seis-
mogram in (b) is for a linear-velocity medium with a velocity function v(z) =
1.6 + 0.5z (km/s). The upper figure shows the velocity model for the seismogram
in (a). It is an increasing-trend, velocity-layered medium, which has a velocity trend

of 1.6 + 0.5z (km/s); the spatial wavelength of the medium is 300 m. The dominant
frequency of source wavelet is 10 Hz.
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F1G. 16. Zero-offset reflections from a vertical interface in four layered media. The
velocity in each medium has a linear trend of 1.6 + 0.5z (km/s) and a sinusoidal

variation with spatial wavelength (a) 250 m, (b) 150 m, (c¢) 100 m and (d) 60 m,
respectively. The dominant frequency of the source signal is 10 Hz.
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survive the evanescent filtering. As layers of sedimentary media become thinner,
progressively more high-frequency energy survives the thin, high-velocity layers. If
the spatial wavelength of the medium is smaller than the minimum wavelength of the
seismic signal, the shape of the frequency spectrum is similar to that for a medium
without velocity-layering; seismic waves tunnel through the thin, high-velocity layers
for all frequencies.
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F1G. 17. Frequency spectra of the reflections from a vertical interface in four different
layered media. The dominant frequency of the source signal is 10 Hz. The velocity in
each of the media has a linearly increasing trend of 1.6 + 0.5z (km/s). One medium
has no velocity-layering. The spatial wavelengths of the other three media are 150 m,

120 m and 60 m, respectively.

Dip-Dependence of Stratigraphic and Evanescent Filtering

Both stratigraphic filtering and evanescent filtering cause high-frequency loss of
seismic waves when they are reflected from a geologic structure beneath a sequence
of sedimentary layers. The amount of high-frequency loss is determined by both the
thickness of layers and the dip of the interface.

Figure 18 illustrates the geometry of zero-offset waves reflected from interfaces
with different dips. The high-frequency loss of waves reflected from horizontal inter-
faces is only caused by stratigraphic filtering because no evanescent energy is pro-
duced, while this loss is mainly attributed to evanescent filtering for waves reflected
from vertical interfaces because of their large propagation angles. As for an interface
with a dip between 0° and 90°, the loss of high frequencies can be attributed to the
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combined results of stratigraphic filtering and evanescent filtering. The stratigraphic
filtering is weaker for steeper interfaces, as waves travel through less layers and spend
more time in each layer; the filtering is the strongest for horizontal interfaces. On the
contrary, the evanescent filtering is stronger for steeper interfaces, as waves travel at
larger angles and produce more evanescent energy and faster decay. Reflections from
a dipping interface have their high frequencies attenuated by the trade-off of the two
filtering effects depending on the thickness of layers and the dip of the interface.

In Figure 3, I compared the frequency spectra of reflections from horizontal and
vertical interfaces in an increasing-trend, velocity-layered medium with spatial wave-
length comparable to the dominant wavelength of the seismic signal. The reflection
from the vertical interface is dominated by low-frequency energy, while that from
the horizontal interface is not. This observation demonstrates the strong evanescent
filtering of seismic signals when the spatial wavelength of the medium is comparable
to that of the seismic signal, while stratigraphic filtering is weak in this particular
medium.

When the sedimentary layers of the medium get thinner, more high-frequency
energy tunnels through high-velocity layers. However, shortening of the time-delay
of short-period multiples increases the likelihood of losing high frequencies due to
stratigraphic filtering. Therefore, the decrease in the thickness of layers decreases the
high-frequency loss due to evanescent filtering but increases the loss due to strati-
graphic filtering.

Figure 19 shows the scaled frequency spectra of waves reflected from different dip-
ping interfaces with the same travel time, where the ratio of changes of the medium
to that of the wavefield is less than 0.5. I use the frequency fy¢, where the corre-
sponding amplitude drops to 60% of the peak amplitude, to measure the frequency
content of the reflection. The spectrum corresponding to the vertical interface con-
tains more high frequencies than that for the horizontal interface; i.e., fo¢ for the
vertical interface is higher than fy¢ for the horizontal interface. The fy¢ for the 45°
interface is higher than that for the horizontal interface, and lower than that for the
vertical interface. This dip-dependent phenomenon tells us that the high-frequency
loss of waves reflected from a dipping interface is dominated by stratigraphic filtering
if the thickness of layers in the medium is much smaller than the seismic wavelength.

According to the above experiments and discussions, stratigraphic filtering is
stronger with the decrease of reflector-dip or layer-thickness, while evanescent filtering
is stronger with the increase of reflector-dip or layer-thickness. The high-frequency
loss of waves reflected from a dipping interface is the combined result of the two
filtering effects.
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F1G. 18. Geometry of zero-offset reflections from interfaces with different dips. In
a medium with a sequence of sedimentary layers, reflections from a steeper interface
spend more time travelling in each layer.
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Fi1G. 19. Dip-dependent frequency distribution of zero-offset reflections with the same
travel time. The velocity of the sedimentary medium has a linearly increasing trend
of 1.6 + 0.5z (km/s), and a sinusoidal variation with a spatial wavelength of 60 m.
The dominant frequency of source signal is 10 Hz. The dotted lines show frequencies
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which corresponding to 60% of peak amplitudes.
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CONCLUSION

Summary

Seismic waves may lose their high frequencies, not only as a result of the inelas-
ticity of media, but also as a result of the velocity layering when waves travel in a
layered sedimentary sequence. Waves reflected from interfaces embedded in sedimen-
tary media lose their high frequencies in a dip-dependent way.

Velocity layering may cause two possible low-pass filtering effects on reflection
seismic waves: stratigraphic filtering and evanescent filtering. Both of these filtering
effects depend on the dip of the reflecting interface. Stratigraphic filtering is caused
by the destructive interference of short-period multiples; the steeper the reflector dip,
the less high frequencies are lost due to the destructive interferences. Evanescent
filtering is caused by repeated tunneling of the evanescent energy; the steeper the
reflector dip, the more high frequencies are attenuated in high-velocity layers.

Stratigraphic and evanescent filtering of seismic waves are also affected by the
thickness of layers in the medium. If the layers are thick relative to the seismic
wavelength, waves reflected from a vertical interface are strongly affected by the
evanescent filtering. The thicker the high-velocity layers are, the less high frequencies
tunnel through these layers; hence, stronger evanescent filtering is applied to these
waves. On the other hand, for waves reflected from a horizontal interface, the thicker
the layers are, the less high frequencies are attenuated by the destructive interference
of short-period multiples; hence, weaker stratigraphic filtering is applied to these
waves. In Figure 20, we can see that the two filtering effects have the opposite
dependence on the reflector dip and layer thickness.

Frequency content of waves reflected from a dipping interface beneath a layered
medium is affected by the combined result of stratigraphic filtering and evanescent
filtering. When the layers are thick relative to the seismic wavelength, the high-
frequency loss is dominated by evanescent filtering; more and more high frequencies
are lost with the increase of the reflector dip. However, when the layers are thin rela-
tive to the seismic wavelength, the high-frequency loss is dominated by stratigraphic
filtering; less and less high frequencies are lost with the increase of the reflector dip.

The loss of high-frequency signals in seismic waves reflected from geologic struc-
tures due to velocity layering is important. Without those high frequencies, even a
good migration technique will not be able to accurately image steep geologic struc-
tures. Better imaging of structures requires a dip-dependent deconvolution technique
to regain those high frequencies.

Furthermore, horizontally traveling waves occur in cross-hole experiments as a
rule rather than exception. Hence, the study of the attenuation of seismic waves due
to velocity layering and large, non-vertical propagation angles may also be helpful for
subsurface imaging in borehole-to-surface and borehole-to-borehole seismic surveys.
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F1G. 20. The dependence of stratigraphic filtering and evanescent filtering on the
reflector dip and the layer thickness.
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Suggestions for Future Research

Study of Reflections in Randomly-Layered Media

Statistical studies of the Earth’s stratified lithology (e.g., Godfrey, 1980, Velze-
boer, 1981, Banik et al., 1985b) show that a sedimentary sequence in the earth can
be considered as a stochastic sequence, such as a Markov-chain. The Markov-chain
approach yields synthetic sections similar to those recorded from cyclic deposits (e.g.,
Godfrey, 1980). Furthermore, Velzeboer (1981) noted that a major portion of the
stratigraphical column of the Gulf of Mexico is made up of a binary sequence of sand
and shale cyclic alternations. Quantitative studies on stratigraphic filtering have been
conducted using these statistical sedimentary models (Godfrey et al. 1980, Banik et
al. 1985a, 1985b, White et al. 1990). Banik (1985b) concluded that the effect of
stratigraphic filtering on seismic waves depends on the statistical properties of the
sedimentary sequence rather than the detail of the sediments.

However, the research in this thesis is based on a qualitative observation and anal-
ysis of the dip-dependent attenuation of synthetic seismograms. Reflections recorded
in these seismograms correspond to increasing-trend, velocity-layered media. For a
further study of this behavior, it is necessary to investigate whether evanescent fil-
tering depends on the statistical properties of the medium, or on the detail of the
sediments. Therefore stochastic-velocity background media are expected to be used
in the study. In addition, a quantitative study is necessary for better understanding
of evanescent filtering.

As inverse () filtering is a reliable technique in compensating for the attenuation
due to inelasticity, a good understanding of dip-dependent attenuation may lead to
the possibility of developing a dip-dependent deconvolution technique which has a
physical basis.

Improvement of Modeling Algorithm and Its Applications

Most methods for modeling waves reflected from complex structures, such as ray
tracing and Kirchhoff modeling, assume that the background sedimentary medium
is a smooth function, e.g., linearly increasing with depth. In contrast, the modeling
algorithm described in this thesis can handle sedimentary media with fast variations
with depth relative to seismic signals, e.g., increasing-trend, velocity-layered media.
Therefore, this modeling method is useful for studying the behavior of seismic waves
caused by velocity layering. However, the uniformly sampled grid is inefficient for the
deep portion of the medium, which may have a much longer wavelength than does the
shallow portion. An adjustable grid for finite-differencing, where the sampling spacing
changes with the signal wavelength, may enhance the efficiency of the modeling.

This modeling method also has the advantage that it can handle complex geologic
structures, as the only assumption made in the Born approximation is that of a small
perturbation. Hence, theoretically, there are no restrictions on the shape of reflectors.
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As the FKFD algorithm can be used to compute the Green function due to a 3-D
point source, waves reflected from a 3-D geologic structure can be modeled using this
same approach. However, the numerical representation of an arbitrary geometry of
reflector is not trivial. Perhaps with the use of computational geometry techniques,
geometry of reflectors can be better numerically represented, thus enhancing the
ability of this modeling method to handle complex structures. In this 3-D case,
the fast Hankel transform algorithm (Deng, 1991) can be used to compute, with an
enhanced efficiency, waves reflected from a complicated 3-D geologic structure.

In addition to the study of dip-dependent attenuation of seismic waves, this mod-
eling method can also be used to study other phenomena caused by thin layering or
steeply dipping reflectors, such as thin density layering effects and transverse isotropy.
This modeling may also be used for cross-hole tomography or amplitude-versus-offset
(AVO) analysis.
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Appendix A

DERIVATION OF FINITE-DIFFERENCE EQUATIONS

The finite-differencing for obtaining the frequency-wavenumber response of a lay-
ered medium starts from the equation,

d1d, (o
Pz pdz v2(2)
where S(w) is the Fourier transformed signature of a source at depth 2z, and P(w, k, 2)

is the pressure field. The frequency and wavenumber response in equation (A-1) is
solved by a finite-difference scheme known as the “1/6 trick” (e.g., Claerbout, 1985).

k) P = = 5 = 2)S(w _
) P = =~ 2)5(0), (A1)

For a uniformly sampled grid, the medium is discretized into a set of thin “layers”,
which have the same thicknesses. In each “layer”, the